Jets and Calorimetry: First Look

Brian Page
Calorimeter WG Parallel Session
3/19/2020

Jet Kinematics

• Jet production extends quite far forward (proton going direction), especially at higher energies – forward tracking and calorimetry will be as important as mid-rapidity

Jet η Vs Energy

arxiv:1912.05931

Figure 4. Jet energy vs jet pseudorapidity (in the lab frame). η^{jet} is defined as positive in the proton (ion)-going direction. The jets are defined with radius R=1.0 and the anti- $k_{\rm T}$ algorithm. The beam energies of the simulation are 20 GeV for the electron and 100 GeV for the proton.

Particle Energy Vs η

Tracker Vs HCal Resolution

Mid-Rapidity Region -1 < η < 1

 Tracker provides better resolutions for nearly all energies and pseudorapidities

Forward Rapidity Region 1 < $|\eta|$ < 4.5

 Assumption: use tracker for all hadrons except long lived neutrals such as neutrons and K⁰₁s

5

Assumed Resolutions

Component	Pseudorapidity Range	Resolution
Back EMCal	$-4.0 < \eta < -2$	$\frac{1.5\%}{\sqrt{E}} \oplus 1\%$
Mid-Back EMCal	$-2 < \eta < -1$	$\frac{7\%}{\sqrt{E}} \oplus 1\%$
Mid EMCal	$-1 < \eta < 1$	$\frac{10\%}{\sqrt{E}} \oplus 1\%$
Fwd EMCal	$1 < \eta < 4.0$	$\frac{10\%}{\sqrt{E}} \oplus 1\%$
$Fwd/Back\ HCal$	$1 < \eta < 4.0$	$\frac{50\%}{\sqrt{E}} \oplus 10.0\%$
Lo Res Mid Hcal	$-1 < \eta < 1$	$\frac{75\%}{\sqrt{E}} \oplus 15\%$
Hi Res Mid Hcal	$-1 < \eta < 1$	$rac{35\%}{\sqrt{E}}\oplus 2\%$

Jet p_T Smearing

- Study jet p_T resolutions using smearing generator
- Smear particle momenta and energies based on detector characteristics
- Use BeAST detector parameters (baseline design does not include mid-rapidity hadron calorimeter)
- Also look at effects of track finding inefficiency, and midrapidity HCals – assume SPHENIX and ZEUS resolutions

Particle Level Projections

- Look at the true jet p_Ts which contribute to three specific detector level jet p_Ts
- Assume no mid-rapidity HCal, or the SPHENIX or ZEUS HCal resolutions
- The no Hcal case has a large tail of high pT particle level jets which contribute to lower pT detector jets due to the loss of neutral hadrons
- Lo Res Hcal reduces this high energy tail, but has a significant low energy tail

Neutral Hadron Veto

- A low energy resolution HCal may not improve jet energy resolution much, but may be useful as a neutral hadron veto
- Identify jets which contain neutral hadrons by finding energy clusters which do not have tracks pointing to them
- The roughly 66% of jets which do not contain neutral hadrons will have energy resolutions defined by the tracker and can have a very small correction
- Only apply a large correction to the 33% of jets which have neutrals

Particle Separation

- $Q^2 = 10 100 \text{ GeV}^2$, R = 1.0
- In forward region, find distance at plane with z = 3400 mm (potential front face of HCal)

Jet
$$p_T > 5 \text{ GeV}$$

Jet
$$p_T > 10 \text{ GeV}$$

- Look at distance between each pair of charged or neutral hadrons inside jet (EM particles)
- In Barrel region (-1 < η < 1), report distance in eta-phi space
- In forward region (1 < η < 4) report absolute distance in millimeters

Hadron Distance at Forward Cal: lab pt1 DIS

HCal and Substructure

- Assess distortions to angularity spectrum caused by smearing of neutral hadrons in the Hcal
- On a jet-by-jet basis, either smear energies and positions of neutrals using realistic detector response, or drop neutrals completely and recalculate angularity
- Compare altered angularity with true for those jets which had neutral
- Narrower green curve means Hcal benefits measurement

$$rac{\sigma_E}{E}=rac{75\%}{\sqrt{E}}\stackrel{.}{\oplus}15\%$$
 $rac{\sigma_E}{E}=rac{50\%}{\sqrt{E}}\oplus 10\%$ $\sigma_{xy}=rac{10~ ext{cm}}{\sqrt{E}}\oplus 0.6$

Summary

- The above is a generic overview of some issues regarding calorimetry (mostly hadron) for jet physics conclusions will be refined as YR work progresses
- For now, assume full calorimeter coverage (-4 < η < 4) with energy resolution at midrapidity poorer than in endcaps
- Particle / Jet energies will be low tracker will almost certainly provide better resolution for charged particles
- Depending on extent and efficiency of tracker, calorimeters may be only detecting elements at forward angles ($\eta > ^{\sim}3.5$)
- EIC jets are sparse objects, however, more work on required granularity and position resolution will be needed

Particle Separation

